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MAXIMUM POSSIBLE ERROR IN POSITION 
IN A LEAST SQUARES ORBIT 

R.  G. Langebartel 

SUMMARY 

A second order theory is developed for the problem of determining the 
maximum possible e r ror  in position if a Keplerian orbit is fitted by least squares 
to a set of observational data under the condition that the sum of the squares of 
the distances between the true and observed positions be held constant. A re- 
sult of the first order theory is that the maximum er ror  at any one position in 
the orbit occurs when the observed positions coincide with the least squares 
computed positions. This doesn't remain true in the second order theory. 

Application of the second order theory is made in detail to the case of cir- 
cular orbits . 

iii 



CONTENTS 

Page 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1 THE LEAST SQUARES ORBIT ............................. 
THE MAXIMUM PROBLEM ............................... 3 

THE FIRST ORDER THEORY .............................. 9 

THE SECOND ORDER THEORY ............................ 19 

KEPLEFUAN FORMULAE ................................. 25 

CIRCULAR ORBIT ..................................... 36 

REFERENCES ........................................ 39 

V 



a 

e 

P 

Z 

a 

E 

V 

LIST OF SYMBOLS 

semi-major axis of true orbit 

eccentricity of true orbit 

angle of perigee of true orbit 

instant of perigee passage in true orbit 

semi-major axis of least squares orbit 

eccentricity of least squares orbit 

angle of perigee of least squares orbit 

instant of perigee passage in least squares orbit 

polar coordinates of position in true orbit 

polar coordinates of position in least squares orbit 

mean anomaly for true orbit 

eccentric anomaly for true orbit 

mean anomaly for least squares orbit 

eccentric anomaly for least squares orbit 

polar coordinates of observed position 

Pi ,b i  see (1.4) . 
~2 see (2.1) -. 
Q2 see (2.2) 

E' see (3.28) 

vii 



. 

MAXIMUM POSSIBLE ERROR IN POSITION 
IN A LEAST SQUARES ORBIT 

R.  G. Langebartel 

INTRODUCTION 

A pertinent problem in orbit determination theory is the gauging of the effect 
of observational data errors .  One approach, suggested by D r .  B. Kruger, is to 
investigate the nature of the distribution of e r rors  that gives r ise  to the maxi- 
mum e r ro r  in one predicted position. That is the problem considered here for 
the case of two-dimensional Keplerian motion where it is assumed the computed 
orbit is an ellipse fitted to the observational data by least squares. This least 
squares ellipse is, of course, a specialized curve fi t  in that it takes into account 
the special parameterization of the ellipse (with respect to time) peculiar to 
Newtonian two-body motion. A s  constraint in the maximum problem it is assumed 
that the sum of the squares of the distances between the observed and true posi- 
tions is a constant. No other assumption on the 3rrors is made. 

THE LEAST SQUARES ORBIT 

The elements of the true elliptic orbit in the plane are the semi-major axis 
a , the eccentricity e ,  the angle of perigee p , and the instant of perigee passage 
z . The elements for the least squares orbit a r e  indicated by the corresponding 
Greek letters: a , E , 7 7 ,  and 5. Position in the true orbit is given by the polar 
coordinates r (distance) and f (angle), position in the least squares orbit by P 
and cp .  The direction from one focus as the origin from which angles are meas- 
ured is arbitrary but fixed throughout the discussion. The functional relations 
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a r e  those of the Newtonian theory: 

r = a (1 - e cos g) p = a ( l  - E cos y) 

cos (f -p) = a r - l  (cos g - e) cos (cp -77 )  = a p-' (cos y - E )  

(1.2) 
s = 4 - a - 3 ' 2  (t - z )  5 = 6 , - 3 ' 2  (t - 5) 
s = g - e s i n g  5 = y - E sin y 

Thus, s and g a re  the mean and eccentric anomalies, respectively, for the true 
orbit, and5 andy are those for the least squares orbit. The gravitational para- 
meter ,LL is the  product of the gravitation constant by the sum of the masses of 
the two bodies. 

The least squares orbit is defined by requiring a ,  E ,  n, and 5 to be so 
chosen as to minimize the sum of the squares of the distances between the 
observed and computed positions. Suppose that positions have been observed 
at n + 1 different instants of time and let these observed positions be denoted 
by ( r k ,  f k ) ,  k = 0, 1, . . . , n. Consequently, the function to be minimized is 

- . I  

n 

P 2  = y (ik' t p;  - 2 ik pk cos ( T k  - cpk)) .  

Introduce the notation 

U 
knO 

(1.4) 

The function P2 is a function of the pi through the variables pk and 'pk . Hence 
the four equations of condition for the least squares orbit are 

The solving of these equations determines pi in terms of the quantities ;k and 

f k  ' 



2. THE MAXIMUM PROBLEM 

We wish to ascertain what distribution of e r ro r s  in the observational data 
will bring about the greatest discrepancy between the true and least squares 
computed positions at the kth instant, tk, if we impose the constraint that the 
sum of the squares of the distances between the true and the observed positions, 
i.e. the sum of the squares of the errors ,  is held constant. That is to say, we 
are to maximize 

subject to the side condition 

The problem is to determine the values of Ck and T, that make W 2  a maximum. 
The variables pk and yk in W * are to be regarded as functions of ik and T, by 
virtue of (1.5) and (1.2).  It should be noted that s ,  g ,  u,y vary with t so we 
write 

i ‘k = a ( 1  - e cos g,) 

Dk = y, - E sin y,. 

The fundamental equations for the isoperimetric problem are 
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where A is the Lagrange multiplier. 

A more compact form for the equations involved results if we introduce 
the notation 

The necessary conditions for a maximum thus have the form 

cc, 

t A@, = 0, 

The dependence of pk and ‘pk on im and Tm has been specified by the least 
squares equations of condition (1.5). U s e  can be made of (1.5) if we write (2.5) 
in the form 

and then use (1.5) to eliminate a p i p  im and a p i p  T m .  
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The equation (1.5) is 

and upon differentiation with respect to  Fm and with respect to Tm this becomes 

j =1,2,3,4 

- a P i  2 C j i  - - K j m  I i = 1  aT m 

where 

Upon introduction of the matrices 

- .  . . . * -  

a'Pn\ a P l  

a 'PO 

a 4 

5 
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we have for (2.6) and (2.8) 

Evidently the necessary condition for a maximum now has the form 

G'l H t hg = 0 

Pk G" K + h 1 = 0 

(2.11) 

(2.12) 

(2.13) 

These equations are highly non-linear in the ;,,, and l,,, and recourse must be 
had to some approximation procedure. Suppose that the functions involved are 
expandable in powers of a variable E: 
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(2.14) 

Note from (2.4) and (2.10) that if the observed positions coincide with the true 
positions, Pk , g, and 5 all vanish (which is, of course, in conflict with the 
constraint Q2 = c2 if c > 0).  If & is a parameter such that the observed con- 
figuration becomes the true configuration when & vanishes then the constant 
terms in the expansions of Pk , 5 ,  and 1 must all be zero as is indicated in 
(2.14). In view of the parenthetical statement above we must also have c and 
1 vanishing simultaneously. Actually, we shall ultimately take 
tiple of c but this specialization is not necessary now. It is only required at 
this point that the vanishing of bring about the coincidence of the observed 
positions with the true positions. 

to be a mul- 

We need the expansion of the matrix G-l. 

This shows that 

I 8 

(2.15) 



The substitution of (2.14) and (2.15) into (2.13) leads after some matrix algebra 
to the infinite system of equations 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3.  THE FIRST ORDER THEORY 

The particular character of the first order equations (2.16) rests on the 
manner in which the low order terms in the expansions of :m , Tm 3. p,, and 
,m 'p are involved. Since 
f ,  - f,, 'pk - f,, as &-0 and k = 0, 1, . . . , n ,  the expansions are written as 

has been specialized to the extent that rk-rk,Pkdrk, 

Further, 
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where 

~ 

-- 

and 

=$'I  & +@p & 2  + . . . 
(Dk = ( D p  & -t ( D p  I 2  + ' * . 

The first few terms in the expansions of the quantities appearing explicitly in 
(2.13) are easily obtainable and in particular we find 

a rz a f;f a rf a f f  
p p  = $1) ab + ail) - = pi1 )  - + rz yL1) - 

a b  a b  a b  

- 1  a rf 
F(0) = 

k=O 

a r  
a b  

H(o> =-= 

- .  . . .- 
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where 

There will also be needed the expansions of the least square elliptic orbit 
parameters. Upon writing 

we have 
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Now 
/ - c 

I L 

t3.Q 

Consequently, there is the alternative expression for Pi1): 

It is apparent that there is still needed the relation between ,B( )and ( ) , 
f (l). This relation results from the lead off term in the expansion of (1.5), the 
equation of condition for the least squares orbit, in conjunction with (3.8). The 
coefficient of & in (1.5) when set to zero gives an equation which when rear- 
ranged has the form 

L 

And so the required relation between p( ) and ( , T ( ) is afforded by 

The matrix R that appears in$) is an encumbrance that can bc; made to dis- 
appear from the equations (2.16) by the introduction of a new matrix J(O) in place 
of KCo) where 

12 



'n 

' 'n r - 0 .  

ab, 

Note that K(O) = J(O)Rwith R non-singular, so that the equations (2.16) have 
the form 

(3.12) 

It may be noted that a rk / a b  and rk a f /ab are the k + 1 st columns of the 
matrices and J ( O )  , respectively, whereupon there is suggested the notation 

And it is convenient to combine these into one matrix: 

(3.13) 

(3.14) 
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The matrix of these matrices likewise occurs and so we define 

a x  = -- 
a b  

Then 

a f l  a rn a fn' - 
rn q- r - * * . * -  a f o  a - rl 

I 

r -  arO 
ab, ab,  ab, 

~~~ 

(3.15) 

U 
krO 

krO 

(3.17) 

Thus the observed position coordinates as represented by the matrices X '1' and 
j i  $1 ) must satisfy 

(3.19) 4 
n n 

This is an eigenvalue problem for the eigenvectors X $ ) , X 4' and the 
eigenvalue A('). Some information about the eigenvectors is readily obtained by 
postmultiplying the first equation by H(O)~, the second by J ( o ) T ,  and subtracting 
since these operations, if  A(') # 0 , result in 

14 



(3.20) 

This cannot be used by itself to solve for ?il) in terms of iil) or  vice versa if 
n > 3 because H(O) and J(O) are non-square and thus have no inverses. 

The two matrix equations (3.19) represent 2n + 2 equations in the unknowns 
ii1) , T i l )  and so considerable complexity in the spectrum could be expected. 
Fortunately, this is not the case as only two of the eigenvalues can be different 
from zero. This circumstance arises essentially from the fact that 2X,/ab is 
a non-square matrix. Let X = (Xi ' )  , i$')), i.e. a row matrix with 2n + 2 elements, 
and let L be the 2n + 2 x 4 matrix 

Then the matrix A 
equation becomes simply 

LF(') a\ /2  b is a 2n + 2  x 2 matrix and the eigenvalue 

X A A T  A ( O )  x = 0. 

The two columns of A may be regarded as the components of two vectors f; 
and < in avector space of 2n t 2 dimensions. The vectors orthogonal to both 
f; and < f i l l  out a 2n-dimensional vector space. Let X o  be any non-zero 
vector in this 2n-dimensional space. Then XoAAT = OAT = 0 and so every 
vector in this 2n -dimensional subspace is annihilated by AAT and is therefore 
an eigenvector of this matrix with eigenvalue A@) = 0 .  Since the 2n -dimensional 
space is spanned by 2n independent vectors the multiplicity of the zero eigen- 
value is 2n.  In the unlikely event that 6 and < are not independent but are non- 
zero the vectors orthogonal to both P' and will f i l l  out a space of 2 n t l  dimen- 
sions and the multiplicity of the zero eigenvalue in this case will be 2n t 1. 

Thus, in general, there are  only two non-zero eigenvalues. The search for 
these two eigenvaLues is considerably simplified by reducing the eigenvalue 
equation in Xi') , Xf) to one in,B(l). This is accomplished by postmultiplying the 
first equation in (3.19) by H(O): the second by J('IT, and then adding and using 
(3.18) and (3.16). This eigenvalue equation for p('), 

(3.21) 
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can be analyzed in the manner above to obtain the result that in this fourth 
order system two of the eigenvalues are, in general, zero. The zero eigenvalues 
correspond to the eigenvectors pc1)  that are orthogonal to both columns of 
aX, /ab,  i.e., a r f / a b  p ( l )  = 'k af; / a b  P ( l ) =  0 .  But this implies by (3.8) 
that p i 1 )  = rk (pi1) = 0 which in turn implies, as we shall see later, that at least 
to the first and ~ - ~ -  second order W = 0 , indic-atinga-minimumrather thag a rrraxifflum 
- - - -  

The eigenvalues are, of course, the roots of the determinantal equation 

(3.22) 

The eigenvalues are all real since a X , / a  b a X z  /ab and a X /a b 2 XT/ab are 
both symmetric with real elements [ ref. 1, p. 306 1 .  

I 

We now show that the original eigenvectors, Xi')  , X p )  , have a very simple re- 
lationship to  the p:') ,  y,$,'). If (3.20) is used in (3.18) there is obtained 

T 
We cannot conclude from this alone that iil) = ,dl) H ( O )  and f i ( l )  2 = p(l)'  J ( O )  

since H(O) and J ( O )  , being non-square for n > 3 ,  have no inverses. However, 
these formulae are indeed true for eigenvectors corresponding to non-zero 
eigenvalues. W e  can conclude from (3.25) that ?i1) is ,B(l)T H(O) except possibly 
for an additive zero divisor of H ( o ) T .  That is, we can write 

(3.23) 

(3.24) 

(3.25) 

- 
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Substitute these into the eigenvalue equations (3.19) to give 

But if ?I1), iil  ) are eigenvectors then by (3.21) 

Therefore, if A ( O ) # O ,  we must have Y, = Y, = 0 and, consequently, 

This joins up with (3.8) to give the result that i f  A( O)#O , 

(3.26) 

(3.27) 

that is to say, for a maximum to occur the observed positions must coincide with 
the least squares computed positions and therefore must fall along a Keplerian 
ellipse (though not, in general, the true orbit). This property, to be sure, is a 
consequence of the first order theory. A s  we shall discover later, it does not 
carry over to the second order theofy. 
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Nothing has been said so far about the normalization of the eigenvectors. The 
size of the eigenvectors is regulated by the side conditionQ2 = c2. Before we 
can determine its effect we must decide on the variation of c with I .  We choose 

C € =  
a m  

Since the lead off term in the expansion of Q2 is 

the eigenvectors must satisfy I 
j i ( 1  lT + j z ( 1 )  i (1 >T = a2 (n + 1). (3.29) 1 2 2  

The vector p(1 )is governed accordingly. Working with (3.26) we find 



(3.31) 

This can be expressed in terms of the eigenvalue AC0) by seeing from (3.21) that 

and this in turn is - A ( o )  a2 (n  + 1 ) by (3.30). Hence, an alternative form for 
w 2  i s  

4. THE SECOND ORDER THEORY 

Pushing the analysis to the second order consists essentially in treating the 
set of equations (2.17). The following matrices will be needed in the work: 

$ 2 )  z (;w, . . . , ;(2)) 
0 n 

T ( 2 ) )  
ii2) E ( r  0 t i 2 ) ,  . . . , 'n n 

19 
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Then 

Also, from (3.17) and (3.21) we get 

pl1) - A(0) p w T  ($0). (4.4) 

The fundamental second order equations (2.17) thus have the form 

These equations involve two sets of second order unknowns, ~ ( ~ 1 ,  rp(2) and i$2)y 
X(2) besides the eigenvalue perturbation A('). In order to obtain the necessary 

2 
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further relations among these we note first that 

with a similar formula for (pi2) , and that 

so that 

The connectionbetween p12) , cpi2) and the orbital elements is thereupon seen to 
be, in matrix form, 

To complete the cpnne$tion of pG2) , cpl2 ) with ii ) , $) we need now the relation 
between p(2) and X i 2 )  , X S 2 ) .  This relation resides in the least squares equation 
of condition (1.5) which, when expanded to the second order, gives 

p(2)T G(O)  = i ( 2 )  H(O>T + J ( o ) T  + n, 1 

(4.7) 
a b  ' 

22 
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the counterpart to (3.18). We note further from (4.6) that 

c 

This enables us  to remove ,or), cpr) from (4.5) in favor of ,B(2), thereby giving 

The unknowns%2), i $ 2 ) ,  can be eliminated from these equations to leave an equa- 
tion 
spectively, adding, and using (4.7). The resulting equation is 

l 
alone by postmultiplying these two equations by H(o)T and J(o)T , re- 

the counterpart to  (3.21). Since A(O) has already been chosen so as to make the 
determinant of the coefficient of p(2)T vanish, the number A(') , which is present 
in rI 
matrix equal to that of the coefficient matrix. After this has been done, (4.10) 

and n, , must be chosen so as to make the rank of the augmented 
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I 

can be solved for ,B(2). If, on the other hand, P ( I )  is removed from (4.9) by the 
use of (4.7) there a re  displayed equations from which ii2) , ii2) can be obtained. 

A simple relation exists between ii2) and 2i2) ,  a relation derivable by 
multiplying the first equation of (4.9) by H(OIT (H(O)  H ( o ) T ) - l  , the second by 
J ( O I T  ( J ( O )  J ( O I T ) - l  , and subtracting. It is ~ ~ ~~~~~ 

(4.11) 

This is evidently the counterpart of (3.20). 

The coefficient of E 3  in the expansion representing the constraining equation 
(2.2) is 

U 
krO 

so that we must have 

(4.12) 

which is for the second order theory what (3.29) is for the first. The cor- 
responding equation for ,@) results from the application of (3.26) and (4.7) to 
(4.12). W e  find that 

the Counterpart to (3.30). 

A similar computation leads to the expression for W , 
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(4.14) 

T 
Note that the coefficient of E 3  (as well as that of E 2  ) vanishes if P ( l )  
which occurs for ~ ( 0 )  = 0. Thus the vanishing of the eigenvalue causes the vanish- 
ing of W through terms in E 3  at least. 

2Xk/2b = 0 

5. KEPLERIAN FORMULAE 

The work of the last two sections is independent of the type of orbit involved. 
Al l  that is required is that the orbit depend in a well-behaved fashion on four 
parameters (the extension to any number of parameters is immediate). In the 
case of two-dimensional Newtonian two-body motion the parameter dependence 
is given by (1.2). From these the fundamental quantities appearing in the for- 
mulae of the preceding sections are easily computed. The column matrices 
qo) and J L o )  a r e  

25 



a rk1-2 sk 
2 

(1 - e2)-l1 sin ( f k  -pj 
The matrices H ( O )  and J ( O )  a r e  4 x n + 1 and have the elements of qo) and 
J L o ) ,  respectively, a s  their k + 1 columns. 

Let G!?) represent the element in the i th  row and j t h  column of the 4 x 4 
IJ  

matrix (30). Then 
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n 

This determines all the elements of G(O) sinceG(O) is symmetric. 

If we suppose that the observations are made at equal intervals in time then 
the summations with respect to k that are present in the formulae for GIP)can 
be replaced by summations of a different sort. This is accomplished by 
employing the Fourier series expansions in s for the various orbital quanti- 
ties, since then the original summation index k will occur only on the variable 
s and will appear only as a simple factor. The sum over k is then accom- 
plished through the use of the following series which represent the complex 
geometric series and its first two derivatives: 
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1 n 
2 2 2 

C O S  pke = csc - p 6  sin*pO COS -pB 

1 n 
2 2 ~~ - 2  

k C O S  pk6 = n csc - pB s i n  n+l p 8  cos - pB 
k=O 

1 1 
4 2 

- - C S C ?  --e [(n t 1) - n c o s  p e  - COS np81 

1 n t l  n 
2 2 2 

k2 cos  pke = n2 c s c  -pp8 s i n  - p6 c o s  - p6 

I k=o 

I 
n 1 
4 2 

- - c s c 2  --e [(n t 1) - n COS pe - c o s  np61 

(5.4) 

k s i n p k 8 = n c s c - p B s i n - p B s i n - p 0  1 n t l  n 
2 2 2 

k=O 

- - 1 c s c 2  1 p6 [n s i n  p6' - s i n  np81 
4 2 

1 n t l  n 
2 2 2 

k2 s i n p k e  = n 2  csc-ppB sin-p0 s i n - p B  
k=O 

- -csc2  n --e 1 [n s i n  p e  - s i n  npe l  
4 2 

I n p e -  

28 
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Let % be one of the quantities connected with the orbit. Its Fourier expansion 
in terms of the mean anomaly s is of the form 

where skis the value of s at the k +lst instant: sk = 6 a3I2 (t, - z ). 
stants A ,  ap , b are all independent of k. We are assuming the observations 
are made at e&al intervals in time and so we write 

The con- 

where 6' = 4 a'3/27, @ = 6 a - 3 / 2  z , and T is the interval (in time) between 
successive observations. Then the Fourier expansion of X, becomes 

a, 

% = A + {[ap cos pO - bp s i n  pO1 cos pk6' 
p=1 

+ [a  s i n  p@ + bp cos POI s i n  pkB}. 
P (5.7) 

For the elements of ($0) we require the sum of 5 over k together with its 
first two moments. In forming this finite sum we add the Fourier series term 
by term, a process justified bv the fact that the Fourier series converge for all 
values of s. [ ref. 2, p. 210 1 . The result is, upon using (5.4), 

2 % = ( n + l )  A +  2 csc -pB 1 sin--6' n t l  (ap cos psnI2 t b p  s i n  psnI2) 
k=O p= 1 

2 2 

where snI2 is the value of the mean anomaly at the instant t=(n/2)7. In a 
similar fashion we can compute the first two moments. The formulae are 
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D(O) (ap c o s  psnI2 t b s i n  psn12), Xk = (n t 1) A t r p  P 

k=O Pt 1 

p= 1 

where 

1 
2 2 

D ~ O )  I c S c  -pe s i n  n+l p e ,  

1 D(2) = - - s o 3  
P 6  

( s n 1 2  n - o, 
(5.10) 

In order to use these formulae to obtain representations for  the elements 
of G(O)we need to know A, ap, b , the coefficients in the Fourier expansions 
for  the various quantities connected with the true orbit. These expansions are 
known [ref. 2, p. 2051 and the particular ones we require are given in the 
following table: 

P 

30 
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X 

s i n  g 

cos  g 

r 

r-1 

r2 

cos ( f  - p) 

s i n  ( f  - p) 

r cos ( f  - p) 

r s i n  ( f  - P )  

s i n 2  g 

r-l s i n  g 

r2 s i n  ( f  - p) 

r-l s in2 g 

A 

0 

1 - - e  
2 

a (1 + + e l )  

a-I 

a2 (1 t 9 e2) 

- e  

0 

3 - - a e  
2 

0 

1 
2 

0 

- 

0 

1 a-1 
2 

bP 

2 - J, (pe) 
eP 

0 

0 

0 

0 

0 

2 v"2 J; (pe) 

0 

2a G2 
eP J, (Re) 

0 

0 

In these formulae J,(z) 
and J ~ ( z )  
natives to (5.3) we have 

is the Bessel function of the first kind and pth order, 
is its derivative with respect to the argument, z .  Then, as alter- 

m m 
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m m 

p= 1 p= 1 

m m 

t 6 a @  D:') JL (pe) cos  psn12, 
p= 1 

p= 1 

p= 1 p= 1 

1 

u -  J1 - e2 p=i  

m 

32 
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The factors Jp (pe) and Ji (pe) in the summands in these series bring 
about quite rapid convergence. In fact, these factors are both positive decreas- 
ing functions of p [ ref. 3, p. 254 I and, moreover, 

which shows that the convergence is exponential inasmuch as  the coefficient of 
p in the argument of the exponential functions in (5.12) is negative for 0 < e < 1. 
If e is very small the first term in the series for G ! ? )  serves as  a good 
approximation for the series. Besides this only a small extra e r ro r  will be 
introduced if J, (e) 
since the e r ro r  terms are 0 (e3) and 0 (e2) , respectively. 

1 1  

and J; (e) are replaced by (1/2)e and 1 /2 ,  respectively, 

The quantities occurring in the second order theory for the maximum 
problem depend to a great extent on the second derivatives of r and f with 
respect to the orbital parameters. In a straightforward computation these are 
found to be 
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- 0, a 2 r  - a2 r --- 
73b, ab, a z  ap 

a2 r - = pr’2 e cos ( f  - p), 
ab: 



a 2 f  3 = - -ar- ,  s (1  - [ r e  - 2 a  (1 - e2)  c o s  ( f  - p)l  , 
ab, ab, 2 

= 0 ,  a 2  f 
ab, ab, 

= 0 ,  a2 f 
ab, ab, 

= 0 ,  a2 f 
ab, ab, 
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In the work leading to the expressions (4.6) for p ( * ) a n d r ~ ( ~ ) t h e r e  are the 
relations 

I 

-i 

~~ 

(5.13) 

showing the connection of the second derivatives of r and f with the matrices 
occurring in section 4. Indeed, with ,B( )determined in a particular case from 
the first order theory and with [ 2 p / a  pi] ( 1) and [ &p/a,B,] ( ) computed with 
the aid of (5.13) and the above second order derivative formulae all matrices 
a re  computable that are needed in (4.10) so that this equation may be solved 
for p( 2 ,  and A( 1. 

6 .  CIRCULAR ORBIT 

In the case of a circular orbit the eccentricity is zero and the angle of perigee 
and instant of perigee passage become indeterminate. Thus, in dealing with cir- 
cular orbits we have only to consider the radius, a .  Consequently, such matrices 
a s  H( O)and C( O)which are  4 x (n t 1)and 4 x 4 in the two-dimensional elliptic orbit 
case become 1 x (n + 1) and 1 x 1 in the two-dimensional circular orbit case. 

The true circular orbit is defined by 

and it is on 
a re  based. 

r=a  
these formulae that the matrices occurring in the maximum problem 
In particular, 
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The position at the k + 1 st instant in the least squares circular orbit is 
determined by 

which were computed from (3.8) and (6.2). The first order Langrange multiplier, 
A(o), is found from (3.22) and (6.2) to be 

but the one-dimensional eigenvector p( 1 ) = is not determined by the equation 
(3.21) precisely because the matrices involved are  1 x 1. That is to say, the 
only freedom for the direction of P O )  is that afforded by the sign of p(' and this 
is left unspecified by (3.21). The magnitude of p(l) is, however, another matter 
and it is found from (3.30): 

Probably the most satisfactory way of representing the maximum value of 
W2 is in terms of the true anomaly, f .  By (3.32), (6.4), and (6.1) we obtain for 
the maximum value of the squared distance between the k t 1st true point and the 
k + 1st least squares computed point (to the first order) 
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To get an idea of the size of this we note that if k = n and fn = 1 radian with n 
regarded as large w2 is approximately 2c2/(n + 1). ~ 

~~ 

In extending the work to include the second order terms we need the follow- 
ing basic results: 

The second order terms in the least squares computed position at the k t 1 st 
instant a re  then available from (4.6) as expressions in terms of  and these 
are  

P2) = 
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, -The remaining second order quantities present no problems and we obtain 

This formula for 
e r ro r  occurring at the end of the run. Formulae (6.7) and (6.8) show that the 
coincidence of the least squares computed positions with the observed positions 
(for maximum error) that held in the first order theory (cf. (3.27) ) does not 
carry over, in general, to the second order. And, finally, the maximum squared 
e r ro r  at the end of the run (k=n) for a circular orbit is 

is for the case k = n , i.e., for the maximization of the 

= (n t [1 t-- 
8 n  
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The ratio of the second order term to the first order term for a sweep of 
one radian ( f  =I) and large n is, approximately, 

n 

C 0.287 

~ ~ 
~~ ~~~~~ 

~ 

in absolute value. Since in practice c can be expected to be very much smaller 
than a m  , perhaps around 1/500th its size, the indication is that the first 
order theory will be adequate in the case of a single pass of moderate length. 
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